Modified Particle Swarm Optimization
نویسنده
چکیده
Particle Swarm Optimization (PSO) is a very popular optimization technique, but it suffers from a major drawback of a possible premature convergence i.e. convergence to a local optimum and not to the global optimum. This paper attempts to improve on the reliability of PSO by addressing the drawback. This problem of premature convergence is more probable with the problems, which have the global optimum surrounded by the positions returning bad function values as these regions remain unexplored and swarm can get stuck into some local optimum. In the present paper, a modified particle swarm optimization is proposed to address this problem. During each iteration cycle, while deciding new positions, some particles will be chosen to give weightage to the worst solutions instead of good solutions. It will enable them to exploit the region for a probable global optimum. This modified method would free PSO from local optimum solutions; enable it to progress towards the global optimum searching over wider area. So the probability, of not getting trapped into local optima gets enhanced which gives better assurance to the achieved solution. Numerical experiments on the benchmark functions have been discussed in the paper.
منابع مشابه
A Modified Discreet Particle Swarm Optimization for a Multi-level Emergency Supplies Distribution Network
Currently, the research of emergency supplies distribution and decision models mostly focus on deterministic models and exact algorithm. A few of studies have been done on the multi-level distribution network and matheuristic algorithm. In this paper, random processes theory is adopted to establish emergency supplies distribution and decision model for multi-level network. By analyzing the char...
متن کاملA Novel Hybrid Modified Binary Particle Swarm Optimization Algorithm for the Uncertain p-Median Location Problem
Here, we investigate the classical p-median location problem on a network in which the vertex weights and the distances between vertices are uncertain. We propose a programming model for the uncertain p-median location problem with tail value at risk objective. Then, we show that it is NP-hard. Therefore, a novel hybrid modified binary particle swarm optimization algorithm is presented to obtai...
متن کاملOptimal Placement of Static VAR Compensator to decrease Loadability Margin by a Novel Modified Particle Swarm Optimization Algorithm
In this paper, the Static Var Compensator (SVC) has been used to improve dynamic behaviour of power system. To do this, a new objective function is formulated considering power loss reduction, voltage profile improvement and loadability margin decrease. Other contribution of this research is proposing a novel structure for Particle Swarm Optimization (PSO) algorithm through modifying the initia...
متن کاملOptimal Placement of Static VAR Compensator to decrease Loadability Margin by a Novel Modified Particle Swarm Optimization Algorithm
In this paper, the Static Var Compensator (SVC) has been used to improve dynamic behaviour of power system. To do this, a new objective function is formulated considering power loss reduction, voltage profile improvement and loadability margin decrease. Other contribution of this research is proposing a novel structure for Particle Swarm Optimization (PSO) algorithm through modifying the initia...
متن کاملAdaptive particularly tunable fuzzy particle swarm optimization algorithm
Particle Swarm Optimization (PSO) is a metaheuristic optimization algorithm that owes much of its allure to its simplicity and its high effectiveness in solving sophisticated optimization problems. However, since the performance of the standard PSO is prone to being trapped in local extrema, abundant variants of PSO have been proposed by far. For instance, Fuzzy Adaptive PSO (FAPSO) algorithms ...
متن کاملA Modified Particle Swarm Optimization Algorithm
In optimizing the particle swarm optimization (PSO) that inevitable existence problem of prematurity and the local convergence, this paper base on this aspects is put forward a kind of modified particle swarm optimization algorithm, take the gradient descent method (BP algorithm) as a particle swarm operator embedded in particle swarm algorithm, and at the same time use to attenuation wall (Dam...
متن کامل